HLQ INDUCTION EQUIPMENT CO., LTD

ELECTROMAGNETIC PROCESSING OF MATERIALS TECNOLGIE DEI PROCESSI ELETTROTERMICI

Induction Heating: fundamentals

Induction heating fundamentals

https://dwinductionheater.com

1

Induction heating physical principles

Characteristics of induction heating

- High temperature in the workpiece (in most cases).
- High power density for a short heating time (in many applications).
- High frequency (in many applications).
- Thermal sources are inside the workpiece.

Induction heating phy	sical principles
Induction heating fundamental laws: con	nstitutive relations
$\begin{array}{c} \text{Magnetic} \\ \text{permeability} \end{array} B = \mu_0^* \mu_r(H)^* H \end{array}$	B 10 High Magnitzation 10 High Magnitzation 11 High Magnitzation 12 Medium Magnitzation
When a conductive material is placed in a magnetic field, it generates its own bound currents	
These "bound currents" are due to the interaction between the magnetic field, the bounded electrons (that move	2 40 60 60 100 Wagnetic Field H
themselves to the total magnetic field in the material.	$\mathbf{B} = \boldsymbol{\mu}_{0}^{*} \boldsymbol{\mu}_{r}^{*} \mathbf{H} (\boldsymbol{\mu}_{r} \approx 1)$ (paramagnetic and diamagnetic materials)
The μ_r value measures the ability of a material to support the formation of a magnetic field within the line in the support of the suppor	diamagnetic materials)
Most materials behave similarly to vacuum:	$B = \mu_0 * \mu_r * H$
Few materials (e.g. iron, cobalt, nickel and most of their - alloys) behave differently:	$\mu_r >> 1$ (up to 10 ⁴ , μ_r depends on H)
	(ferromagnetic or magnetic materials)

Characteristics of induction heating process

How is the workpiece heated by means of induction?

- 1. An electric current (normally high) flows in a conductor (COIL or INDUCTOR).
- 2. The current generates a magnetic field (4th Maxwell's equation).
- The current in the coil varies with time (normally it has a frequency) à the generated magnetic field (and its flux) have a frequency as well.
- The <u>time variation of the magnetic flux</u> generates an electromotive force e (3rd Maxwell' s equation).
- 5. The electromotive force can be considered as a voltage V applied to the conductor.

Characteristics of induction heating process

How is the workpiece heated by means of induction?

- The workpiece (clways a conductor, i.e. metal or alloy) is near the coil (electric field more intense).
- 7. The voltage V between the points of the workpiece generates currents in it (Ohm's law)à

àinduced currents or eddy currents.

- 8. Eddy currents gener ate power in the workpiece.
- 9. The power is dissipated in the workpiece and causes its heating.
- The heat is distributed in the workpiece according to the material's thermal properties. Workpiece's temperature raises.

Characteristics of induction heating process

How is the workpiece heated by means of induction?

Eddy currents generate **power** in the workpiece.

Power is the rate at which energy is transferred, used, or transformed: P = E /t

Why eddy currents generate power?

What is power?

Because eddy currents (i.e., moving electrons) collide with the metal atoms: • Because current flowing in a conductor gives rise to heat (Joule effect)

3.The skin effect

Maximum current density on the	conductor external	surface		
Exponential decay of current dens	sity toward the con	ductor's cer	nter	
	r val	ue %	of J ₀	Formula
$-r/\delta$	r = 0	10	0%	$J(0)=J_0$
$\boldsymbol{J}(\boldsymbol{r}) = \boldsymbol{J}_0 \boldsymbol{e} \boldsymbol{\nabla}$	r =δ	37	%	$J(\delta)=J_0/2.72$
	↑ r=2	*δ ¹⁴	.%	$J(2*\delta d)=J_0/7.3$
δ = penetration depth	r = 3	* δ ^{5%}	6	J(3* <mark>δ</mark>)=J₀/20.1
	₹ r = 5	* δ 0.1	7%	J(5* <mark>δ</mark>)=J₀/148
	• •	- At	the billet's o	centre:
Cross section of a billet.		J(I	R) = 0	
currents distribution)) (Penetration	depth) Only	anga a from the spinor surface
	0			P

the second second			The ski	n effec	
	$\delta = \sqrt{\frac{\rho}{\pi \mu_0 \mu_\kappa}}$	 f	resistivity a m	naterial parame	ster
	Material	Resistiv	vity [Ohm*m] values	 reference 	
	Material	@ T _{amb}	T ≈ 700 ° C	T ≈ 1000 ° C	
H	Copper	2*10-8	6*10 ⁻⁸	15*10 ⁻⁸	@ T _{amb} :
	Carbon (magnetic) steel	20*10- 8	100*10 ⁻⁸	120*10-8	$\delta_{\text{stainless steel}} \approx 6 * \delta_{\text{copper}}$
	Stainless (non- magnetic) steel	80*10 ⁻ 8	120*10-8	140*10-8	Current squeezed on the surface
	Brass	7*10-8	13*10-8	16*10-8	Current distributed in the workpiece

30/10/17

				「日本」
б	$= \sqrt{\frac{\rho}{\pi \mu_0 \mu_r f}} \qquad f = frequent$	cy à process	parameter	S.A.
Exam	ple:			
• f = 5 • f = 5	50 Hz à very low frequency 500000 Hz à very high frequency	,	à $\delta_{\text{low_freq}} \approx 100 * \delta_{\text{high_freq}}$	
	Typical frequency range: 1 kHz ÷ 300 kHz		$\begin{array}{l} \textbf{Smaller} \delta \\ \textbf{Current squeezed on the surface} \\ \textbf{Bigger} \delta \end{array}$	
			Current distributed in the workpiece	

30/10/17

Examples

Rule-of-thumb in the choice of frequency

Lower frequency (1÷2 kHz)

- Through heating
- Good performance on big parts

Medium frequency (2÷50 kHz)

More often used: surface heating of average parts, annealing, stress relieving...

Higher frequency (50÷500 kHz)

- Surface heating (< 1 mm case depth), welding
- Good performance on small parts.

	Chains	of appropriato fr	oguopov:	
	Choice		equency:	1010
example. Sr ng.	nall magnetic st	eel tube (diam. 5 m	im, wali 0.5 mm).	Inrougn
Multi-turn c	oil. Internal diam.	20 mm. Total heatin	g time = 10 s.	
Frequenc y [kHz]	Magnetic field intensity [A/m]	Average final temperature [°C]	Total power (coil + tube) [kW]	Electrical efficienc y
1	1'000'000	520	800	0.009
100	10'000	740	4	0.67
100	30' 000	1220	13	0.37
400	12' 500	1230	9	0.65

30/10/17

5.Proximity effect, ring effect, flux concentrators effect

30/10/17

Induction Heating: Fundamentals