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a b s t r a c t

Induction heating of cylindrical nonmagnetic billets by their rotation in static magnetic
field is modeled. The magnetic field is produced by a system of appropriately arranged
permanent magnets. The numerical model is solved by our own full adaptive higher-order
finite element method in a monolithic formulation, i.e., both magnetic and temperature
fields are solved simultaneously, respecting their mutual interaction. All principal nonlin-
earities are included in themodel (permeability of ferromagnetic parts of the systemaswell
as temperature dependences of physical parameters of the heated metal). The methodol-
ogy is illustrated by two examples whose results are discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Induction heating of cylindrical billets of various nonmagnetic metals (mostly aluminum) is a widespread technological
process often used for their softening before hot forming [1,2]. This process is usually realized by the two followingmanners:

• heating of an unmoving billet in a system of static, harmonic currents carrying inductors,
• heating of a rotating billet in static magnetic field generated by static coils.

Heating by inductors carrying harmonic currents belongs to the classical ways of such heat treatment (the simplest
possible arrangement is schematically shown in Fig. 1) that has been employed since the thirties of the twentieth century.
But its effectiveness is rather low due to the high Joule losses in the inverter and inductor (that must be transferred away by
an appropriate cooling medium). The efficiency of the process typically does not exceed 40%–50%. More details about the
process and its modeling can be found in numerous publications; see, e.g., [3–6].

Heating of a rotating billet in staticmagnetic field produced by direct current-carrying inductor is schematically depicted
in Fig. 2. It was proposed about ten years ago and modeled by several groups of authors [7–10]. But even here we have to
face serious problems. The most important of them is generation of a sufficiently high magnetic field and corresponding
eddy currents in the billet. As its revolutions are rather limited (in the case of massive billets with diameters over 0.1m their
value n = 750 rpm or, atmost, 1500 rpm), the only possible solution is using very high field currents, which usually requires
superconducting devices with all necessary amenities. Now the Joule losses (due to a low resistance of the field windings)
are not so significant, but certain energy is consumed by the cooling devices and rotation of the billet. The overall efficiency
of the process is reported to be about 70%–80%. Presently, several systems of this kind successfully work in industrial plants,
such as [11].

The authors of this paper startedwith research of another version of thismethod suitable for billets of lower diameters, up
to about 0.1 m. Here the static magnetic field is generated by appropriately arranged high-parameter permanent magnets.
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Fig. 1. Induction heating of a static metal billet in a static inductor carrying harmonic current of amplitude I and frequency f .

Fig. 2. Induction heating of a rotating metal billet in a static inductor carrying direct current of value I .

This version is characterized by the absence of the field coils (and corresponding Joule losses) and the only losses in the
system are mechanical. The driving engine must provide a torque higher than the drag torque caused by the interaction
between the static magnetic field and currents induced in the rotating billet. In this case, efficiency could reach even 85%.
The first study of the systemdescribing induction heating of a thin-wall aluminumpipewas published in [12,13], and several
results were validated (with a very good agreement) experimentally on a physical model.

The paper deals with a thorough analysis of the induction heating of massive aluminum billets realized in this manner.
Determined are themain operation characteristics of the process such as the velocity of heating, drag torque, efficiency, and
other quantities of higher importance.

2. Formulation of technical problem

Two versions of the investigated arrangement are depicted in Figs. 3 and 4. They are sufficiently long in the axial direction,
so that the distributions of magnetic and temperature fields in themmay be considered 2D. The aluminum billet rotates (at
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Fig. 3. Arrangement with permanent magnets fixed on a ferromagnetic hollow cylinder.

Fig. 4. Arrangement with permanent magnets fixed on ferromagnetic shoulders.

angular velocity ω) in the static part of the system consisting of permanent magnets fixed either in a ferromagnetic hollow
cylinder (Fig. 3), or on ferromagnetic shoulders (Fig. 4). The permanent magnets are embedded in a good thermal insulation
that prevents them from excessive heating due to convection of heat from the billet.

The number of permanent magnets in Fig. 3 should be even (due to magnetic symmetry) while the number of the
shoulders carrying a pair of such magnets can be quite arbitrary. Orientation of the permanent magnets is not depicted
in this general scheme because it can change from one case to another case.

The goal is to map the distribution of magnetic field in the system and time evolution of its local and average
temperatures. In addition to finding its principal characteristics, checked will also be the temperature rise of the permanent
magnets that must not exceed a prescribed value (higher temperature could substantially deteriorate their operation
parameters). The problem is solved in the monolithic formulation (i.e., both physical fields are solved simultaneously, with
one stiffness matrix). All important nonlinearities of the system are taken into account.

3. Continuous mathematical model of the problem

Magnetic field in the system may advantageously be described by the magnetic vector potential A. Its distribution is
given by the solution of the equation [14]

curl



1

µ
curl A − Hc



− γ v × curl A = 0, (1)

where γ is the electrical conductivity, µ denotes the magnetic permeability, v stands for the vector of the local velocity of
rotation, andHc is the coercive force (this is only considered in the domain of the permanentmagnets, elsewhere it vanishes).
A sufficiently distant artificial boundary is described by the Dirichlet condition A = 0.

The currents induced in the rotating billet are characterized by the density

Jind = γ v × curl A (2)
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that produces in it the volumetric Joule losses

wJ =
∥Jind∥

2

γ
. (3)

These losses represent the local sources of heat.
The time-dependent distribution of the temperature in the system obeys the heat transfer equation in the form [15]

div (λgrad T ) = ρc ·



∂T

∂t
+ v · grad T



− wJ, (4)

where λ is the thermal conductivity, ρ denotes the specific mass, and c stands for the specific heat. The boundary condition
along the external surface S of the system can be written in the form

− λ
∂T

∂n
= αgen(TS − T0), (5)

where αgen stands for the generalized coefficient of convective heat transfer that includes also the influence of radiation, TS
is the surface temperature, T0 is the ambient temperature and n denotes the direction of the outward normal to the surface
of the system at a given point.

All physical parameters of used materials (µ, γ , λ, ρ, c) are generally nonlinear functions of temperature T and these
nonlinearities (as far as they are known) are respected. Temperature-dependent is also the coefficient αgen, but this
dependence is very difficult to find, so that it will be considered constant.

Eqs. (1) and (4) together with the corresponding boundary and initial conditions will be solved numerically, in a
monolithic formulation.

4. Numerical solution

The solution of (1) and (4) is realized in the Cartesian coordinates x, y. First, both equations are transformed in the sense
of the weak formulation. The form corresponding to (1) reads



Ω

1

µ



∂Az

∂x
·
∂w

∂x
+

∂Az

∂y
·
∂w

∂y



dS +



Ω

γ



Azvx ·
∂w

∂x
+ Azvy ·

∂w

∂y



dS

= −



Ω

1

µ



Br,y ·
∂w

∂x
− Br,x ·

∂w

∂y



dS −



Γ

K · w dl, (6)

while the analogous form for (4) is


Ω

λ



∂T

∂x
·
∂w

∂x
+

∂T

∂y
·
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dS +



Ω
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Ω

ρcT



vx ·
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∂x
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∂w
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dS +



Γ

αT · w dl

=



Ω

wJ · w dS +



Γ

(αT0 + g) · w dl. (7)

Here, Ω denotes the cross section of the investigated area and Γ is its boundary. Symbol Az is the z-component of
magnetic vector potential, vx and vy are the components of velocity v in the corresponding directions, and, finally, Br,x and
Br,y stand for the components of remanence Br. Symbol α denotes the generalized coefficient of convective heat transfer, T0
is temperature of external air, and K and g are appropriate constants. Finally,w is a suitable testing function of a polynomial
character satisfying the boundary conditions of the problem.

The numerical solution of (6) and (7) is realized by a fully adaptive higher-order finite element method [16], whose
algorithms are implemented into our own codes Hermes [17] and Agros2D [18]. Both codes have been developed in our
group for a couple of years.

The codes written in C++ are intended for monolithic numerical solution of systems of generally nonlinear and
nonstationary second-order partial differential equations (rewritten into corresponding weak formulations), whose
principal purpose is modeling of complex coupled physical problems. While Hermes is a library containing the most
advanced procedures and algorithms for the numerical processing of the task, Agros2D represents a powerful preprocessor
and postprocessor. Both codes are freely distributable under the GNUGeneral Public License. Themost important (and often
quite unique) features of the codes follow:

• Solution of the system of PDEs is carried out monolithically, which means that the resultant numerical scheme is
characterized by just one stiffness matrix. The PDEs are first rewritten into the weak forms whose numerical integration
provides its coefficients. The integration is performed using the Gauss quadrature formulas.
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• Fully automatic hp-adaptivity. In every iteration step the solution is compared with the reference solution (realized on
an approximately twice finer mesh), and the distribution of error is then used for selection of candidates for adaptivity.
Based on sophisticated and subtle algorithms the adaptivity is realized either by a subdivision of the candidate element
or by its description by a polynomial of a higher order [16]. The mesh can be composed of triangular, quadrilateral or
curved elements and their combination.

• Each physical field can be solved on quite a different mesh that best corresponds to its particulars. This is of great
importance, for instance, for respecting skin effect in the electromagnetic field, boundary layers in the problems
containing the field of flow, etc. Special powerful higher-order techniques of mapping are then used to avoid any
numerical errors in the process of assembly of the stiffness matrix. In nonstationary processes every mesh can change in
time, in accordance with the real evolution of the corresponding physical quantities.

• Easy handling with hanging nodes [19] appearing on the boundaries of subdomains whose elements have to be refined.
Usually the hanging nodes bring about a considerable increase of the number of the degrees of freedom (DOFs). The code
contains higher-order algorithms for respecting these nodeswithout any need of an additional refinement of the external
parts neighboring with the refined subdomain.

The algorithms of adaptivity start to be applied at the moment when some local error of solution is higher than the
acceptable tolerance. Consider an equation

Lf = 0 (8)

where L denotes a differential operator and f a function whose distribution over some domain is to be found. If f ′ is its
approximation obtained by numerical solution of (8), the absolute and percentage relative errors η and ε are defined by the
relations

η = f − f ′, ε = 100









η

f









. (9)

Other quantities that can be checked in this way are the norms. Hermes2D, for example, works with the basic energetic
norm given by the expression

∥e∥ =











Ω

η(Lη) dΩ









1/2

. (10)

L2 norm defined by the relation

∥e∥L2 =











Ω

η2 dΩ









1/2

, (11)

and H1 norm given by the expression

∥e∥H1 =











Ω

(η2 + grad η · grad η) dΩ









1/2

. (12)

Unfortunately, the exact solution f is known only in very simple analytically solvable cases. Moreover, there exists no
general method that would provide a good estimation of the error for an arbitrary PDE. That is why the codes work [16] with
the reference solution fref instead, that is obtained either by a refinement of the whole mesh (h-adaptivity), by enlargement
of the polynomial degree (p-adaptivity) or by both above techniques (hp-adaptivity). In this manner we get the candidates
for adaptivity even without knowledge of the exact solution f . The library Hermes2D works with very sophisticated and
subtle higher-order tools based on the above considerations.

5. Illustrative examples

The first example solves an arrangement corresponding to Fig. 5. A cylindrical aluminum billet of diameter d = 60 mm
is inductively heated by rotation at a given angular frequency corresponding to n = 1500 rpm in a stationary magnetic field
generated by a system of permanent magnets, see Fig. 6. The axial length of the arrangement is 500 mm.

The magnetic circuit is made of standard carbon steel ČSN 12 040. Its material characteristics are depicted in Figs. 7–10.
Fig. 7 shows its magnetization characteristic at the room temperature (T0 = 20 °C). But this information is not enough.
Magnetic permeability µr , as known, is a function of magnetic flux density B and temperature T . For every type of steel
this function must be found experimentally, which usually represents a serious complication. We introduce, therefore, an
assumption that µr(B, T ) = µr(B, T0) · ϕ(T ), where µr(B, T0) is the dependence of relative permeability on magnetic flux
density B at a given temperature T0 and function ϕ is given by the relation

for T0 ≤ T ≤ TC ϕ(T ) = a − bT 2,

for TC ≤ T ϕ(T ) =
1

µr(B, T0)
.
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Fig. 5. Experimental device.

Fig. 6. Cylindrical aluminum billet rotating in a system of permanent magnets (all dimensions in mm).

Fig. 7. Magnetization characteristic of steel 12 040.

Here

a =
µr(B, T0)T

2
C − T 2

0

µr(B, T0)(T
2
C − T 2

0 )
, b =

µr(B, T0) − 1

µr(B, T0)(T
2
C − T 2

0 )
,

and TC is the Curie temperature (for the steel used its value is approximately 800 °C).
Figs. 8–10 show the temperature dependences of its electrical conductivity, thermal conductivity and heat capacity,

respectively. Obviously, all of them are nonlinear.
The permanent magnets (based on rare earths) are of type VMM10 and exhibit the remanence Br = 1.41 T and relative

permeability in the second quadrant µr = 1.21. They are the strongest magnets available in our market.
Figs. 11–13 show the temperature-dependent characteristics of pure aluminum. Even those exhibit nonlinear behavior.
Thermal insulation is made of glass wool that exhibits very good insulation properties. Its thermal conductivity is

considered independent of temperature and its value λ = 0.04 W/mK and even its thin layer prevents the permanent
magnets from excessive overheating.
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Fig. 8. Dependence of γ = γ (T ) for steel 12 040.

Fig. 9. Dependence of λ = λ(T ) for steel 12 040.

Fig. 10. Dependence of ρc = ρc(T ) for steel 12 040.

Fig. 11. Dependence of λ = λ(T ) for aluminum.

Fig. 12. Dependence of γ = γ (T ) for aluminum.

First, a series of computations showed that both permanent magnets and magnetic circuit remain practically cold
(even when the average temperature of the billet was more than 300 °C, their temperature did not exceed about 40 °C).
This allowed accepting an assumption that the physical parameters of these parts may be considered independent of
temperature, which simplified all remaining calculations, shortening them several times.
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Fig. 13. Dependence of ρc = ρc(T ) for aluminum.

Fig. 14. Mesh for the computation of magnetic field in the system.

Fig. 15. Distribution of magnetic field calculated on the mesh in Fig. 14.

Fig. 14 shows the discretization mesh used for modeling of magnetic field in the system after several adaptive steps.
The mesh combines triangular and curved elements, which leads to savings in about 20% of DOFs compared with a purely
triangular mesh (the accuracy of results being the same). The numbers in rectangles on the right side show the orders of
polynomials in particular elements. Fig. 15 shows the corresponding distribution of magnetic field in the system.

Fig. 16 shows the convergence curves (dependences of the relative error of magnetic field on the number of DOFs) for a
meshwith purely triangular elements andwith combined elements, when the process of adaptivity starts either from linear
(p = 1) or quadratic (p = 2) polynomials. The computations on the with combined elements obviously converge faster.

The distribution of temperature along the radius of the billetwithin the range 0–25mm for several time levels is shown in
Fig. 17. This distribution is practically quite uniform, which is caused by a very good thermal conductivity of pure aluminum
and relatively long period of heating (on the order of minutes). Of course, some minor front effects can be expected at both
ends of the billet, but our previous experimental experience confirmed that they were very small (below about 3%).

Finally, Fig. 18 depicts the time dependence of the average temperature in the billet. This dependence is almost linear,
which shows that the process of heating is practically adiabatic. This is caused by the small thickness of the air gap, a good
thermal insulation, and sufficient length of the system.
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Fig. 16. Convergence curves of computation of magnetic field in the system.

Fig. 17. Distribution of the temperature along the radius of the billet for several time levels.

Fig. 18. Time evolution of the average temperature of the billet.

The second example solves another arrangement corresponding to Fig. 4. A cylindrical aluminum billet of diameter
d = 100 mm is inductively heated by rotation at a given angular frequency corresponding to n = 750 rpm, see Fig. 20.
The number of shoulders with one pair of permanent magnets is 8. The axial length of the arrangement is 120 mm. All
materials have the same parameters as in the previous example.

The task is to map the process of heating and its parameters in the dependence on the thickness δ of air gap that may
change from 10 to 1 mm.

We considered two possible variants differing by the orientation of permanent magnets according to Fig. 19.
First, we investigated the convergence of results for the distribution of magnetic field at the initial temperature (20 °C).

The corresponding graphs for the variant b are in Figs. 21 and 22. While Fig. 21 shows the dependence of the relative error
of computation on the number of DOFs, Fig. 22 depicts the dependence of the same value on the number of the adaptive
steps.

While application of h-adaptivity for p = 1 (first-order polynomials) lead to a very slow convergence, for p = 2 the
situation is muchmore favorable. But the fastest convergence is obtained for the p-adaptivity and full hp-adaptivity. Within
the range of the depicted errors both curves are practically identical.

Fig. 23 shows the final discretization mesh (variant b) after the adaptive process. The numbers in rectangles on the right
depict the orders of the polynomials approximating the magnetic vector potential in particular elements.

Fig. 24 depicts the dependence of the average volumetric Joule losses in the billet on the thickness δ of the gap. It is
obvious that from this viewpoint variant b is much more favorable.
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Fig. 19. Two variants differing by the orientation of the permanent magnets.

Fig. 20. The solved arrangement with the detail of the shoulder (dimensions in mm).

Fig. 21. Dependence of relative error ε on the number of DOFs (magnetic field, variant b).

Figs. 25 and 26 show the time evolution of the average temperature of the billet for variants a and b, respectively, for
variable thickness δ of the gap between the permanentmagnets andbillet.With decreasing thickness δ the process of heating
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Fig. 22. Dependence of relative error ε on the number of iterative steps (magnetic field, variant b).

Fig. 23. Discretization mesh used for the computation (magnetic field, variant b) (number of elements is 4 751, number of DOFs is 10 832).

Fig. 24. Dependence of the average volumetric Joule losses in the billet on the thickness δ of the gap.

is faster. But small values of δ are practically unreal. Thiswould lead to a very thin layer of thermal insulation and subsequent
danger of overheating the permanent magnet. Necessary is, therefore, a suitable compromise.

Fig. 27 depicts the drag torque Td per 1 m of the billet as a function on the thickness δ of the gap. It is obvious that the
interaction of the magnetic field produced by the permanent magnets with the billet grows with decreasing value of δ. This
is, as shown in the previous figure, more favorable from the viewpoint of the velocity of heating, but the power of the driving
engine must be higher.
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Fig. 25. Time evolution of the average temperature of the billet for variable thickness δ of the gap (variant a).

Fig. 26. Time evolution of the average temperature of the billet for variable thickness δ of the gap (variant b).

Fig. 27. Dependence of the drag torque Td produced by the system on the thickness δ of the gap.

The last important quantity is the efficiency η of the process. It can be determined from the value

η =
Q

Wm
,
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Fig. 28. Dependence of efficiency ξ of the process on the thickness δ of the gap.

where Q is heat delivered to the billet and Wm denotes the mechanical energy spent for rotation. While Q may be
determined as

Q = mc(T − T0) = ρcV (T − T0),

the mechanical energyWm delivered to the system is

Wm = TdωtT.

Here, ρc is the heat capacity of aluminum, V is the volume of the billet, is the angular velocity, and T0 is its initial
temperature. Finally, tT is the time in which the average temperature of the billet reaches the chosen value T . Fig. 28 shows
the dependence of efficiency ξ on the thickness δ of the gap. It is clear that with decreasing thickness δ of the gap the
efficiency increases. The reason is higher magnetic flux penetrating into the heated billet.

6. Conclusion

The fully adaptive higher-order finite elementmethod used formodeling of the described problem represents a powerful
and precise tool for numerical solution of complex physical phenomena. The model provided realistic results and shows
that even relatively massive billets may successfully be heated by their rotation in magnetic field produced by a system of
permanent magnets.

Next work in the field must be aimed at the optimization techniques that would lead to the design of the most
advantageous arrangements (including orientation of the permanentmagnets) from the viewpoint of the velocity of heating,
drag torque and overall efficiency of the system. The principal way consists in considering a thinner gap between the billet
and permanent magnets, on the other hand, there must still be place enough for the thermal insulation.
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